
A Node Linkage Approach for Sequential Pattern Mining
Osvaldo Navarro, René Cumplido*, Luis Villaseñor-Pineda, Claudia Feregrino-Uribe,

Jesús Ariel Carrasco-Ochoa

Departamento de Ciencias Computacionales, Instituto Nacional de Astrofı́sica, Óptica y Electrónica, Sta. Ma. Tonantzintla, Puebla, México

Abstract

Sequential Pattern Mining is a widely addressed problem in data mining, with applications such as analyzing Web usage,
examining purchase behavior, and text mining, among others. Nevertheless, with the dramatic increase in data volume, the
current approaches prove inefficient when dealing with large input datasets, a large number of different symbols and low
minimum supports. In this paper, we propose a new sequential pattern mining algorithm, which follows a pattern-growth
scheme to discover sequential patterns. Unlike most pattern growth algorithms, our approach does not build a data
structure to represent the input dataset, but instead accesses the required sequences through pseudo-projection databases,
achieving better runtime and reducing memory requirements. Our algorithm traverses the search space in a depth-first
fashion and only preserves in memory a pattern node linkage and the pseudo-projections required for the branch being
explored at the time. Experimental results show that our new approach, the Node Linkage Depth-First Traversal algorithm
(NLDFT), has better performance and scalability in comparison with state of the art algorithms.

Citation: Navarro O, Cumplido R, Villaseñor-Pineda L, Feregrino-Uribe C, Carrasco-Ochoa JA (2014) A Node Linkage Approach for Sequential Pattern Mining. PLOS
ONE 9(6): e95418. doi:10.1371/journal.pone.0095418

Editor: Francesco Pappalardo, University of Catania, Italy

Received July 4, 2013; Accepted March 26, 2014; Published June 16, 2014

Copyright: � 2014 Navarro et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was done under partial support of CONACyT (Project grants 106013, 106443 and 158135). The first author was funded by CONACyT (grant
51443) (www.conacyt.mx). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: rcumplido@inaoep.mx

Introduction

Since Agrawal [1] proposed the problem of sequential pattern

mining, it has become an important data mining problem, mainly

because of its wide variety of applications. Sequential pattern

mining methods have been used in applications such as mining

web usage behaviour [2], [3], [4], Drug-drug interaction detection

[5], text mining tasks such as document clustering [6], question

answering [7], authorship atribution [8], touring path suggestion

[9], CRM strategies for online shopping [10], mining anomalous

events in surveillance videos from commercial environments [11],

among others. This range of applications is possible likely because

datasets from many domains contain some sort of sequential order

between its elements; for instance, the sequential order of proteins

in DNA sequences, time stamps on web access logs and business

databases, the sequence of words in a document, among others.

Furthermore, due to the dramatic pace at which data is collected

nowadays, most of the current data mining methods are becoming

inefficient. This is because most of the popular data mining

methods were created when the common dataset size was several

orders of magnitude smaller [12].

Thus, current datasets pose a significant challenge for current

data mining approaches, which is part of the motivation for this

work.

The two main approaches to tackle the sequential mining

problem are: apriori-based and pattern growth-based [13]. The

first strategy consists in generating a set of candidate patterns and

then testing them against the frequency threshold to find the

sequential patterns. Pruning techniques are usually combined with

this strategy, to generate a candidate pattern set as small as

possible. However, approaches based on this strategy have to deal

with a combinatorial explosion of candidate patterns when dealing

with large datasets and low frequency thresholds. The pattern-

growth strategy finds sequential patterns by appending symbols to

an already know frequent sequence, forming new sequences,

which then are evaluated to see if they are frequent as well. The

pattern-growth based approaches usually do this by traversing a

previously build data structure that represents the entire dataset.

This data structures become huge when processing large

databases, which usually has a negative impact on performance

and memory usage.

In this paper, the Node Linkage Depth-First Traversal

(NLDFT) algorithm for sequential pattern mining is proposed.

Unlike most pattern growth approaches, the proposed algorithm

does not build a data structure to represent the input dataset, but

instead accesses the required sequences through pseudo-projection

databases. The proposed algorithm traverses the search space in a

depth-first fashion and only preserves in memory a pattern node

linkage and the pseudo-projections required for the branch being

explored at the time.

The rest of this paper is organized as follows. The Related Work

section presents a summary of the related work about sequential

pattern mining. The Preliminaries section presents the basic

concepts and ideas necessary to understand the sequential pattern

mining problem and its formal definition. In the Proposed Algorithm

section, the NLDFT algorithm is described. The Performance

Evaluation section describes the experiments made to evaluate the

proposed algorithm and the results obtained from them. Next, the

Complexity Analysis section presents a theoretical analysis and

comparison of the performance of the NLDFT algorithm. Finally,

the Conclusions and Future Work section presents general conclusions

and suggestions for future work.

PLOS ONE | www.plosone.org 1 June 2014 | Volume 9 | Issue 6 | e95418

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0095418&domain=pdf

Related Work
There is a variety of problems that deal with mining frequent

sequences, each one with different input and/or conditions.

Among them, for instance, there is the problem of finding frequent

sequences of symbols [1], frequent sequences of itemsets [14],

maximal frequent word sequences [15], frequent closed sequences

[16], frequent sequences with time constraints [17], among others.

In this work we addressed the problem of mining frequent

sequences of symbols, which will be referred to as sequential pattern

mining in the rest of this article.

The sequential pattern mining problem was first defined in [1].

Since then, many other approaches have been proposed. These

methods can be categorized, by the way they discover sequential

patterns, in three categories: apriori-based approaches, pattern

growth-based approaches and hybrid approaches.

The apriori-based approaches usually discover the sequential

patterns in a breadth-first fashion, i.e., they obtain the frequent

sequences of size k together at the k iteration of the algorithm as it

traverses the search space. Also, these methods depend on a

feature named generate-and-test [18] to carry out the mining. This

feature entails growing already found patterns by one item at a

time and then testing the generated candidates against the

minimum support.

The first algorithm that worked under the apriori-based scheme

was AprioriAll, which was proposed by Agrawal [1]. The

AprioriAll algorithm was proposed to tackle the problem of

finding sequential patterns in a database of customer transactions.

This algorithm travels the search space in a first-breadth fashion,

finding all the patterns of length k in the k iteration before moving

on to the next one. To find the patterns in an iteration level, this

method generates a set of candidate patterns, which are further

tested against the minimum support. Also, the algorithm

incorporates a pruning technique based on the antimonotonic

property that states that if a sequence cannot pass the minimum

support test, all of its super-sequences will also fail the test [18].

This method has the main disadvantage of generating an explosive

number of candidates, particularly at early stages of the mining

process, which consumes a lot of memory.

Another representative algorithm of the apriori-based scheme is

SPADE [19]. This method not only discovers single item

sequences, but sequences of subsets of items, as well. SPADE

represents the search space as a lattice of frequent sequences,

which can be traversed in either depth-first or breadth-first

fashion. The algorithm traverses the lattice, testing candidates

against the minimum support to find the set of frequent sequences.

To achieve this, an id-list is generated for each frequent sequence

in the lattice, which is a list of all the input-sequence identifiers and

item set identifier pairs that contain that sequence. To obtain the

support count of a candidate sequence k-pattern, the algorithm

performs temporal joins over the id-lists of any two of its (k21)

subsequences. Moreover, as maintaining all the intermediate id-list

in memory would not be possible for databases of considerable

size, Zaki proposed to break the lattice into disjoint subsets called

equivalence classes. Thus, each equivalence class can be loaded into

main memory and processed separately. However, even with the

improvement of not having to constantly read the original

database, but only three times, this method still faces the problem

of generating a huge number of candidates, specially when dealing

with large databases and/or low minimum supports.

To tackle the issue of efficiently generating candidate patterns,

Tan et al. [20] proposed SEQUEST, an algorithm that relies on a

structure called Direct Memory Access Strips (DMA-Strips). A

DMA-Strip represents a single sequence in a database, and is

composed by an ordered list which stores a sequence of items’ label,

scope and event-id. The event-id groups items based on their

timestamps and the scope is used to determine the relationship

between two consecutive items in a strip. To generate a candidate

pattern, the algorithm iterates through a DMA-Strim and extends

one item at a time. Next, to test a candidate pattern against the

minimum support, two approaches were proposed: a vertical join

counting approach similar to the one used in [19] and a horizontal

counting approach using a hash table. Experimental results

indicated that the vertical approach performed better than the

horizontal approach. However, the vertical approach performance

could degrade if the frequency of extracted candidate patterns is

high, as it usually occurs when the minimum support is low, due to

the nature of the join approach complexity.

A recent apriori-based approach is PRISM [14]. In this

approach, an encoding based on prime factorization theory is

used to represent the input database, in order to efficiently

calculate the frequency of candidate patterns. PRISM represents

the search space as a tree structure, where each node represents a

sequence, and generates candidate patterns by combining a node

with each one of its siblings. Finally, PRISM uses join operations

over the encoded database to find the frequency of the current

candidate. Although PRISM outperforms previous apriori-based

approached such as SPADE, it also has the issue of the

combinatorial explosion of the candidate generation process,

which would significantly increase the runtime of the algorithm

when dealing with large databases and low minimum supports.

The pattern growth strategy is characterized by traversing the

search space in a depth-first fashion. It offers the advantage of not

having to generate candidate patterns, which avoids the combi-

natorial explosion of patterns when dealing with large databases.

Because of this, the pattern growth strategy has become the most

used scheme of action, preferred over the apriori-based strategy.

Among these approaches, Ezeife and Lu [2] presents the algorithm

Pre-order Linked Wap-Tree (PLWAP), a method for mining sequential

patterns from a web access sequence database, which uses a data

structure named PLWAP-tree [21] to efficiently access the

sequences to be mined. The algorithm then recursively mines

the tree, using prefix conditional sequence search, to find all the

sequential patterns. One of the benefits of this method is that it

only reads the original database twice, which helps to reduce I/O

access costs or extra storage requirements. Also, the algorithm

doesn’t have to build a data structure at each level of recursion,

which yields an improvement in running time, compared with

previous works, which used the same data structure [3]. Peterson

and Tang [22] propose an algorithm which also uses a data

structure based on the aggregate tree. However, this method does

not link the elements of the same type in the aggregate tree, but

instead builds a forest of first-occurrence subtrees as the basic data

structure to represent database projections. Although this method

improves in memory usage compared with the PLWAP algorithm,

it still has to build the entire aggregate tree before the mining

process. This would require a lot of memory when dealing with

large databases, which is usually the case within the text mining

area. Ezeife et al. [23] presents PLWAPLong, also based on the

PLWAP algorithm. PLWAPLong uses a simpler numbering

scheme than PLWAP, to identify ancestor and descendant

relationships in the aggregate tree. In this way, PLWAPLong is

capable of dealing with larger databases than PLWAP, with a

lower impact in performance. Moreover, PLWAPLong uses a

more efficient approach to find the first occurrences of a word in

the aggregate tree, which is a recurrent operation in the mining

process, used to determine the frequency of a word in a projected

database. While PLWAPLong can process larger databases than

PLWAP, the algorithm was tested against databases with rather

Node Linkage Approach for Pattern Mining

PLOS ONE | www.plosone.org 2 June 2014 | Volume 9 | Issue 6 | e95418

small vocabularies and average document size, in comparison with

the ones used in text mining tasks. Furthermore, PLWAPLong too

has to build the entire aggregate tree before the mining process,

which results costly when dealing with databases with large

vocabularies and a large average document size.

The hybrid approaches comprehend methods that combine one

or more features from both apriori-based and pattern growth-

based approaches. Among them, Chen [13] proposes a novel data

structure named UpDown Directed Acyclic Graph (UDDAG), which

supports bidirectional pattern growth from both ends of the

discovered patterns, in order to perform a fast conditional search.

First, the algorithm finds the frequent words in the sequence

database, and uses them to filter the database from infrequent

elements. Next, a frequent word is chosen to be the root of an

UDDAG, and two database projections are created; one

projection is formed by the prefixes of the sequence database

with respect to the root pattern and the other one is formed by the

suffixes. Frequent words are then found in these projections, and

are appended to the root pattern to form new frequent patterns;

thus it is said that in each level of recursion the root pattern is

grown from both ends. Finally, the algorithm combines the

patterns found in both projections to form candidate patterns,

which are tested against the minimum support, in order to find

new frequent patterns. Each one of the projections created is

treated as a new database and the previous process is repeated,

recursively. The UDDAG algorithm is an hybrid approach, as it

uses conditional search in combination with candidate generation,

to find all the sequential patterns. One of the advantages of its

novel data structure, is that in each level or recursion the root

pattern is grown from both sides concurrently, in comparison with

other pattern growth-based methods, that only grow the length of

the root pattern in 1 at each recursion. However, the need to use a

candidate generation phase at each level of recursion impacts

negatively in the algorithm’s performance, and this impact

becomes unacceptable when processing large databases using

low minimum supports, due to the explosive number of candidates

generated.

Many approaches have been proposed to provide an efficient

solution to sequential pattern mining problem. However, the

current methods still have problems when dealing with large

databases and low minimum supports, which is the case in areas

like Text Mining, where the datasets are usually formed by a large

number of documents of considerable size. Two of the most

common issues that occur when processing a large dataset are the

combinatorial explosion of candidates in apriori-based approach-

es, and the generation of huge data structures in pattern growth-

based approaches. The proposed algorithm avoids the candidate

generation phase, and does not build a data structure to represent

the input database, but only access the required sequences through

pseudo-projected databases, and only maintains in memory these

pseudo-projections along with a pattern-node linkage required in

the branch of the search space being explored at a time, thus

avoiding the common issues previously mentioned.

Preliminaries
Before giving the formal definition of the sequential pattern

mining problem, it is necessary to introduce the following

definitions:

Definition 1. Let S be the set of symbols and ‘:’ be the operation of

concatenating any two symbols from S. A non-empty sequence s is a

finite succession of symbols from S, s~s1
: . . . :sm, such that si[S for all

1ƒiƒmv? and si and sj are not necessarily different for i=j. The length

of a sequence s~s1
: . . . sm is m, and it will denoted as len(s). A

sequence database D is a finite set of non-empty sequences. A

pattern is a non-empty sequence.

Definition 2. A non-empty sequence is a subsequence of another

sequence if it is embedded in that sequence, i.e., a sequence s’~s’1 : . . . :s’n is

a subsequence of a sequence s~s1
: . . . :sm, denoted as s’(s, if and only if

nƒm and there exist i1, . . . ,in such that 1ƒi1v . . . vinƒm and

s’j ~sij for all 1ƒjƒn.

Definition 3. A sequence s in D is said to support a pattern p if p is a

subsequence of s. The support of a pattern p in D, denoted as

SupD(p), is the number of sequences in D that support p. Given a threshold j
in (0,1�, a pattern p is frequent with respect to j and D if SupD(p)§jDDD,
where DDD is the number of sequences in D. jDDD is called the absolute threshold

and denoted as g.

Definition 4. Given two sequences s and p, such that p(s, the p-
prefix of s is the prefix of s from the first symbol (the leftmost symbol) to the

first occurrence of p inclusive. This definition is a generalization of the one

found in [24], for sequences of length greater than 1.

Figure 1. Example of a sequence database and its frequent
sequences. Sequence database containing 3 sequences (a) and its
correspondent frequent sequences (b), for a frequency threshold of 2.
doi:10.1371/journal.pone.0095418.g001

Figure 2. Example of search space. An example of the search space for a sequence database with S~fa,b,c,dg.
doi:10.1371/journal.pone.0095418.g002

Node Linkage Approach for Pattern Mining

PLOS ONE | www.plosone.org 3 June 2014 | Volume 9 | Issue 6 | e95418

For instance, considering s~d:e:a:g:b:f :a:g:a:b:c and p~a:b,

the p-prefix of s is d:e:a:g:b. The subsequence d:e:a:g:b:f :a:g:a:b
is not the p-prefix because the first occurrence of a:b in the

sequence is the one that is in bold.

Definition 5. Given two sequences s and p, such that p(s, s can be

represented as s~p̂p:e, where p̂p is the p-prefix of s and e is the rest of the

sequence. The subsequence e corresponds to the projection of s with respect

to p, denoted as proj(s,p).

Roughly speaking, the projection of a sequence s with respect to a sequence p

can be constructed by taking out the symbols in s, from the first one to the last

symbol in the first occurrence of p in s. The remaining symbols will constitute

the projection. For instance, considering s~d:e:a:g:b:f :a:g:a:b:c and

p~a:b, the projection of s with respect to p is f :a:g:a:b:c.

Definition 6. Given a sequence database D and a sequence s, the

projection database of D with respect to s, denoted as Projs(D) is

defined as the set of non-empty projections of every sequence in D with respect to

sequence s. Formally:

Projs(D)~fproj(x,s)Dx[D,len(proj(x,s))=0g ð1Þ

Definition 7. Given a pair of sequences s~s1
:s2
: . . . :sn and w, such

that w(s, and proj(s,w)~si
:siz1

: . . . :sn, the pseudo-projection
of s with respect to w, denoted as pproj(s,w) is defined as follows:

pproj(s,w)~
(ID(s),i), if len(proj(s,w))§0

(ID(s),{1), if len(proj(s,w))~0

�
ð2Þ

where ID(s) gives a unique identifier for the sequence s. If the second entry of a

pseudo-projection is {1, the pseudo-projection will be called empty
pseudo-projection.

Roughly speaking, a pseudo-projection of a sequence s with

respect to a sequence w stores a pair of values: the identifier of s

and the start position of the projection of s with respect to w.

Definition 8. Similarly to definition 6, given a sequence database D and

a sequence s, the pseudo-projection database of D with respect to s,

denoted as PProjs(D) is defined as the set of non-empty pseudo-projections of

every sequence in D with respect to sequence s. Formally:

PProjs(D)~fpproj(x,s)Dx[D,len(proj(x,s))=0g ð3Þ

Theorem 1. Given a sequence database D, a pattern p, and a

symbol e[S, the support of p:e, i.e., p1
:p2
: . . . :pn

:e, in D is equal to

the support of e in the projection database of D with respect to p.

Formally:

supD(p:e)~supProjp(D)(e) ð4Þ

The formal proof for this theorem is similar to the one provided

in [25] for a similar theorem. The proof is as follows:

Proof. ($) Let s be a sequence in D that supports p:e. Then, s can

be represented as s~p̂p:êe, such that ^ is the p-prefix of s, where

p(p̂p and e(êe. Thus, êe is the projection of s with respect to p, then

êe[Projp(D). Also, as e(êe and êe[Projp(D), then for every

sequence in D that supports p:e, there will be a sequence in

Projp(D) that supports e. This means that the support of e in

Projp(D) is at least equal to the support of p:e in D. Therefore,

supProjp(D)(e)§supD(p:e).

(#) Let ~ee be a sequence in Projp(D) that supports e, that is, e(
~ee. As ~ee is the projection of a sequence s9 in D with respect to p, then

s’~~pp:~ee, where ~pp is the p-prefix of s9. Since p(~pp and e(~ee, then

p:e(~pp:~ee~s’. In this way, for every sequence in Projp(D) that

supports e, there will be a sequence in D that supports p:e. This

means that the support of p:e in D is at least equal to the support of

e in Projp(D). Therefore, supProjp(D)(e)ƒsupD(p:e).%

Table 1. Algorithm 1.

input: D, a sequence database

g, a minimum support.

output: F, a set containing all the frequent sequences in D.

1 Initialization

//STEP 1: Find frequent symbols and filter input database.

2 FW r GetFrequentSymbols (D, g)

3 MinFrequency r D.size * g

4 MainDB r FilterDatabase (D, FW)

5 MainProj r GetPseudoProjection (MainDB, 21)

6 F r FW

7 foreach symbol a in FW do

8 | Proj r GetPseudoProjection (MainProj, a)

9 F r F < Mine (Proj, a, g)

10 end

11 Return F

NLDFT’s main function.
doi:10.1371/journal.pone.0095418.t001

Table 2. Algorithm 2.

input: D, a pseudo-projection database

a, a symbol

output: ProjDB, the pseudo-projection database of D with respect to a

12 GetPseudoProjection (D, a)

13 {

14 ProjDB r Ø

15 foreach sequence d in D do

16

|
for i r d.Start to D.Size - 1 do

17 if MainDB[d.ID][i] = = a then

18 Proj r new ProjSequence Proj.ID = d.ID if a = = 21 then

19 Proj.Start r 0

20 else

21 Proj.Start r i + 1

22 end

23 ProjDB.add(Proj) break

24 end

25 end

26 delete Proj

27 end

28 return ProjDB

29 }

NLDFT’s GetPseudoProjection function. This function creates a pseudo-
projection database from an input pseudo-projection database and a symbol.
doi:10.1371/journal.pone.0095418.t002

Node Linkage Approach for Pattern Mining

PLOS ONE | www.plosone.org 4 June 2014 | Volume 9 | Issue 6 | e95418

| | |

|

p̂pp

Having defined the previous concepts, the sequential pattern
mining problem can be defined as the task of finding all the

frequent sequences in a given sequence database D with respect to

a given threshold j. For instance, Figure 1 shows a database

formed by 3 sequences, and its correspondent sequential patterns,

for an absolute threshold (also called frequency threshold) of 2.

Methods

The main idea behind the proposed algorithm is to build

frequent sequences by growing an already known frequent

sequence p with a frequent symbol w found in the database

projection with respect to p, creating the sequence p:w, which

Theorem 1 guarantees that it is a frequent sequence. This process

repeats recursively, until there are no more frequent symbols to

append to the current frequent sequence. The process then rolls

back to the previous frequent sequence found and continues

growing it with another frequent symbol. The search space,

therefore, is represented as a series of trees, one for each frequent

sequence of length 1. Each node of a tree represents a frequent

sequence, and they are located in the tree in a way that a sequence

node will be the same as its parent node, but with a symbol

appended at the end of the sequence. Figure 2 shows an example

of the search space of a small sequence database with four different

symbols.

With each frequent sequence discovered, a new node is built

and liked to its parent node. Each node contains a frequent

sequence, and pointers to its parent node and its descendants, to

maintain the structure of the current tree. Without loss of

generality, the symbols in the implementation have been

represented as positive integers. A sequence can be represented,

then, as an array of integers.

Properly linking every frequent sequence found by the

algorithm would result in a subtree of one of the search space

trees. However, storing the whole tree in main memory during the

mining process is not needed, only the branch where the sequence

that is being grown belongs. This is because it is only required to

access the ancestors of the current sequence, when the algorithm

rollsback to a previous sequence and tries to grow it with another

frequent symbol. This results in a significant memory saving,

specially when dealing with a sequence database with a large set of

different symbols (S).

Although the NLDFT algorithm does not generate candidate

patterns, but grows frequent sequences from already found

frequent sequences instead, the frequency of the found sequences

still has to be ensured. To guarantee that, the proposed algorithm

only uses symbols that meet the minimum support to build

frequent sequences. Each time the algorithm search in a pseudo-

projection database for symbols to build new frequent sequences, it

only retrieves the symbols that meet the frequency threshold. In

this way, when the algorithm uses those retrieved symbols to grow

the current frequent sequence, it is assured that the new sequence

is frequent as well.

The NLDFT algorithm is divided in three main steps. The first

step comprises preliminary operations, which prepare the input

data for the main mining process. The Algorithm 1 in Table 1

shows these operations. First of all, the algorithm reads the original

database and finds the frequent symbols; these symbols correspond

to the set of the frequent sequences of length 1. Next, the database

is read again, and the symbols that are not on the set of frequent

symbols are removed. Next, for each frequent symbols found, the

pseudo-projection database with respect to that symbol is built.

This is shown in Table 2. Next, a call to the mining process is

made, having as input the symbol and the pseudo-projection

database. The mining process then will recursively find the

frequent sequences that start with the corresponding symbol. The

union of the frequent sequence sets found with each iteration will

constitute the set of the frequent sequences of input database.

The second step of the algorithm occurs inside the main mining

process, which receives as input data a pseudo-projection

database, a sequence that will be grown to discover more frequent

sequences and the minimum support. This step is shown in

Table 3. The first operation made in the main mining process is

finding the frequent symbols inside the input pseudo-projection

database. This is done inside the function GetFrequentSymbols, which

is shown in detail in Table 4. There, each sequence of the pseudo-

Table 3. Algorithm 3.

input: D, a pseudo-projection database

p, the growing sequence

g, the minimum support

output: F, a set containing all the frequent sequences in D.

30 Mine (D, p, g)

31 {

//STEP 2: Find frequent symbols in the given projection database.

32 FW r GetFrequentSymbols (D, g)

//STEP 3: Form new frequent sequences by combining the sequence p with every symbol obtained in the previous step.

33 foreach symbol a in FW do

34

|
F r F <{p ? a}

35 Proj r GetPseudoProjection (D, a)

36 Mine (Proj, {p ? a}, g)

37 end

38 Return F

39 }

NLDFT’s Mine function. This function recursively grows the input sequence p.
doi:10.1371/journal.pone.0095418.t003

Node Linkage Approach for Pattern Mining

PLOS ONE | www.plosone.org 5 June 2014 | Volume 9 | Issue 6 | e95418

projection database is read, and the occurrences of the symbols

read in each sequence is counted. Once the function has read all

the sequences, those symbols that met the minimum frequency are

returned as output.

The third and final step of the proposed algorithm also occurs

inside the function Mine, and comprises building new frequent

sequences out of the input frequent sequence and the frequent

symbols found in step 2. After returning from the function

GetFrequentSymbols, and for each of the symbols returned from it, a

new frequent sequence is formed, by appending that symbol to the

end of the input frequent sequence. Finally, a projection of the

input database is generated and used as the input of a new

recursive call to the Mine function, along with the new frequent

sequence built, and the minimum support. The process continues

recursively, until no frequent symbols are found in the current

input database.

Example
Next, an illustrative example about the proposed algorithm’s

functionality is shown. Figure 3 shows a sequence database

composed by six sequences, which is going to be processed by the

proposed algorithm with a frequency threshold of 2. The first step

in the algorithm is to read the database and find the frequent

symbols, which are also the set of frequent sequences of length 1.

Next, the non frequent symbols are removed. The resultant

database appears in the lower part of the figure.

Next, one of the frequent sequences found is selected to be

grown. This is shown in Figure 4. In this case, the chosen symbol is

n and the pseudo-projection database with respect to that sequence

is built. Next, the pseudo-projection database is searched for

frequent symbols. From that search, two frequent symbols are

found: o and a, which are used to build the frequent sequences n:o
and n:a. Next, one of the frequent symbols is chosen, in this case

the symbol o, and a pseudo-projection database is built with

respect to that symbol and the current database. Finally, this new

pseudo-projection database is used, along with the symbol o and

the sequence n:o as the input for the next call of the mining

process and the recursion continues; this part of the process

corresponds to the Step 3 of NLDFT. From the input database of

the new recursive call, the only frequent symbol found is a, which

is used to build the frequent sequence n:o:a.

In the next recursive call, there are no more frequent sequences

to be found, as the input database does not contain any symbol.

This is shown in the upper part of Figure 5. The algorithm then

has to go back to a previous frequent sequence which still has

unprocessed frequent symbols in its associated frequent symbol set,

Table 4. Algorithm 4.

input: D, a pseudo-projection database

g, the minimum support

output: FWArray, the set of frequent symbols in D with respect to g

40 GetFrequentSymbols (D, g)

41 {

42 foreach sequence d in D do

43 Duplicates.clear()

44 for i r sequence.begin to sequence.end do

45 if Duplicates.exists (MainDB [d.I D][i]) = = true then

46 Duplicates.add(MainDB [d.ID][i])

47 if FWArray. exists (MainDB [d. ID][i]) = = true then

48 FWArray.count ++

49 else

50 FWArray.add(MainDB [d.ID][i])

51 FWArray (w).count r 1

52 end

53 end

54 end

55 end

56 for wElem r FWArray.begin to FWArray.end do

57 if wElem.count , MinFrequency then

58 wElem.delete

59 end

60 end

61 return FWArray

62 }

NLDFT’s GetFrequentSymbols function. This function finds the frequent
symbols in the input pseudo-projection database.
doi:10.1371/journal.pone.0095418.t004

Figure 3. Example of the NLDFT algorithm’s functionality (1 of
7). The figure shows a sequence database (a), the set of frequent
symbols obtained from it (b) and the filtered database (c).
doi:10.1371/journal.pone.0095418.g003

Figure 4. Example of the NLDFT algorithm’s functionality (2 of
7). The figure shows two recursive calls to the main mining process,
where 3 frequent sequences are found.
doi:10.1371/journal.pone.0095418.g004

Node Linkage Approach for Pattern Mining

PLOS ONE | www.plosone.org 6 June 2014 | Volume 9 | Issue 6 | e95418

| | | |

|

||

in this case the sequence n, and now choses the symbol a to use in a

subsequent recursive call. Also, in this recursive call there are no

frequent sequences to be found, because the input database does

not contain any symbols. This is shown in the lower part of

Figure 5. Because there are no more frequent symbols to grow the

sequence n, all the frequent sequences that start with that symbol

have now been found. These frequent sequences and their

ancestor/descendant relations are shown as a tree structure in

Figure 6. Next, the frequent sequence c is chosen and the same

process as the one with the frequent sequence n is followed, which

is shown in Figure 7. The pseudo-projection database is then built

with respect to the frequent sequence c and frequent symbols are

searched for in that database. The frequent symbols found are d

and f, which are then used, along with the frequent sequence c to

build the frequent sequences c:d and c:f . Next, the symbol d is

chosen from the new frequent symbol set and another pseudo-

projection database is generated. In this database, f is the only

frequent symbol found, so the sequence c:d:f is the only frequent

sequence built. Now, the just discovered symbol f is chosen and

another pseudo-projection database is generated, which does not

have any symbols, so the recursion stops there, and the process

continues with the symbol f associated with the frequent sequence

c, until all the frequent sequences that start with the symbol c are

found. This is shown in Figure 8. These frequent sequences and

their ancestor/descendant relations are shown in Figure 9. The

next step is to chose another frequent sequence of length 1 and

repeat the process. The algorithm will continue until all of the

frequent sequences of length 1 are processed. Then, the complete

set P of frequent sequences is: P~fn,n:o,n:a,n:o:a,c,c:d,c:d:f ,
s,s:d,s:d:u,u,f ,o,o:a,i,i:s,i:s:d,i:s:d:u,d,d:f ,d:n,d:n:o,d:n:o:a,d:o,
d:o:a,a,a:dg.

The proof of the correcntess of the proposed algorithm is given

in the next section.

Correctness Proof
In this section, a proof is provided to demonstrate that the

sequences found by the NLDFT algorithm in any given database

and according to a minimum support form the complete set of

frequent sequences. The correctness proof shows this in two parts:

first proving that every sequence that meets the frequency

threshold is found by the proposed algorithm; and second, that

the proposed algorithm only discovers sequences that meet the

given frequency threshold.

Let

N D be the input database.

N g be the frequency threshold.

N Palg be the set of frequent sequences discovered by the

algorithm.

N P be the set of sequences that meet the frequency threshold.

The correctness of the proposed algorithm can be demonstrated

by providing the following two statements:

Figure 5. Example of the NLDFT algorithm’s functionality (3 of
7). The upper part shows the next recursive call with respect to the
Figure 4, where the input database does not contain any symbol. The
algorithm goes back to the previous frequent sequence and makes
another recursive call with a different frequent symbol (lower part of
the figure), which does not contribute with any frequent sequence.
doi:10.1371/journal.pone.0095418.g005

Figure 6. Example of the NLDFT algorithm’s functionality (4 of
7). Frequent sequences found by growing the frequent sequence n.
doi:10.1371/journal.pone.0095418.g006

Figure 7. Example of the NLDFT algorithm’s functionality (5 of
7). Recursive calls of the Mine function to grow the frequent sequence
c.
doi:10.1371/journal.pone.0095418.g007

Figure 8. Example of the NLDFT algorithm’s functionality (6 of
7). Last recursive call to grow the frequent sequence c. The projection
database does not contain any symbol, so the recursion stops in this
direction.
doi:10.1371/journal.pone.0095418.g008

Node Linkage Approach for Pattern Mining

PLOS ONE | www.plosone.org 7 June 2014 | Volume 9 | Issue 6 | e95418

N Statement 1: If s is a sequence that meets the frequency

threshold, then s is discovered by the NLDFT algorithm, i.e., if

s[P then s[Palg.

N Statement 2: if s is a sequence discovered by the NLDFT

algorithm, then s meets the frequency threshold, i.e., if s[Palg

then s[P.

Proof of Statement 1. It will be proven that if s[P then

s[Palg, by mathematical induction over the length of s, len(s), for

all the natural numbers, N.

Proof.

Basis: Show that the statement holds for len(s)~1. The

algorithm scans the input database and finds all the symbols whose

frequency is equal or greater than the frequency threshold as a first

step. These symbols correspond to the frequent sequences of

length 1. Therefore, if s meets the frequency threshold, it is found

by NLDFT, which shows that the statement 1 holds for the basis

step.

Inductive step: Show that if the statement holds for a

sequence s9 of length k, then it also holds for a sequence s of length

k+1 where k[N.

Starting from the sequence s:

s~s1
:s2
:s3
: . . . :sk

:skz1 ð5Þ

This could be rewritten as:

s~s’:skz1 ð6Þ

Since s[P, then s’[P and skz1 is frequent. Also, s9 is found by

the NLDFT algorithm, by the induction hypothesis. Moreover, in

the Step 2 of NLDFT (shown in Algorithm 3, Table 3), the

algorithm generates a list of symbols that meet the frequency

threshold for the pseudo-projection database pprojsk
(D). Also, by

Theorem 1, it is known that skz1 also meets the frequency

threshold for the pseudo-projection database pprojsk
(D). There-

fore, skz1 is included in the list of symbols generated in step 2, and

then it will be appended at the end of s9 in step 3, forming the

frequent sequence s. Thus, it has been shown that s[Palg.%

Proof of Statement 2. It will be proven that if s[Palg then

s[P, by mathematical induction over the length of s, len(s), for all

the natural numbers, N.

Proof.

Basis: Show that the statement holds for len(s)~1.

As s[Palg and len(s)~1, the NLDFT algorithm finds s in Step 1

(shown in Table 1), as it is in this step where all the frequent

sequences of size 1 are discovered. Also, s[P, as the NLDFT

algorithm only retrieves the symbols that meet the frequency

threshold. Thus, it has been shown that the statement 2 holds for

the basis step.

Inductive step: Show that if the statement holds for a

sequence s9 of length k, then it also holds for a sequence s of length

k+1 where k[N

Starting from the sequence s:

s~s1
:s2
:s3
: . . . :sk

:skz1 ð7Þ

This could be rewritten as:

s~s’:skz1 ð8Þ

Since s[Palg, then s’[Palg and skz1[Palg. The NLDFT

algorithm finds skz1 in the Step 2 (shown in Algorithm 3,

Table 3), as part of a set of frequent symbols in PProj’s(D),
discovered with the function GetFrequentSymbols. Therefore,

Figure 9. Example of the NLDFT algorithm’s functionality (7 of
7). Frequent sequences found by growing the frequent sequence c.
doi:10.1371/journal.pone.0095418.g009

Figure 10. Comparison of runtime for different frequency thresholds. Processing C20:S5:N2k:D60k.
doi:10.1371/journal.pone.0095418.g010

Node Linkage Approach for Pattern Mining

PLOS ONE | www.plosone.org 8 June 2014 | Volume 9 | Issue 6 | e95418

skz1[P. Next, in step 3, the symbol skz1 is appended at the end of

the sequence s9, forming the sequence s. By the inductive

hypothesis, s’[P. Also, by the Theorem 1, it is known that if

skz1 meets the frequency threshold in the pseudo-projection

database PProjs’(skz1), then the sequence s~s’:skz1 also meets

the frequency threshold in D. Thus, s meets the minimum support.

Therefore, it has been shown that s[P.%

Complexity Analysis
The running time of the sequential pattern mining problem

depends not only in the dimensions of the input database and the

minimum support, but in the form of the sequences as well, and it

is unfeasible to consider an average case scenario, because that

would depend on the domain of the input database. Therefore, a

worst case scenario will be considered to analyze the NLDFT

algorithm’s performance.

Since lowering the minimum support yields a larger set of

frequent sequences and increases the running time of the mining

process, (see Figure 10 and Figure 11), the chosen frequency

threshold in a worst case scenario will be the minimum, i.e., a

threshold of 2 sequences. Considering this, a worst case scenario

for an input database of size mn will have
m

2
pairs of sequences,

each of size n, and each pair of sequences will be composed by

different symbols, unique to that pair. This would yield for each

pair of sequences a set of frequent sequences with size equal to the

size of the power set of its symbols (minus the empty set), which is

the maximum number of frequent sequences that can be

discovered in each pair of sequences. The union of the sets of

frequent sequences of each pair of sequences will form the final set

of frequent sequences. Thus, for a database of size mn and a

frequency threshold of 2, the size of the set of frequent sequences is

given by P~
m

2
(2n{1). An example of an input database for a

worst case scenario is shown in Figure 12.

The two main operations of the NLDFT algorithm are finding

the frequent symbols in a given pseudo-projection database and

building pseudo-projection databases. Since finding the frequent

Figure 11. Comparison of runtime for different frequency thresholds in the study case. The figure shows the runtimes obtained when
processing the study case database at frequency thresholds varying from 20 to 10 sequences.
doi:10.1371/journal.pone.0095418.g011

Figure 12. Example of an input sequence database in a worst case scenario. The figure shows a sequence database of size 464 (a)), formed
by two pairs of sequences with different symbols, unique to each pair. The number of patterns of each pair is equal to the size of the power set
(minus the empty set) of the set formed by the symbols in each pair (b)). The set of frequent sequences P in the database is the union of the sets of
frequent sequences in each pair, P1,2 and P3,4 .
doi:10.1371/journal.pone.0095418.g012

Node Linkage Approach for Pattern Mining

PLOS ONE | www.plosone.org 9 June 2014 | Volume 9 | Issue 6 | e95418

symbols entails checking every symbol in a given pseudo-

projection database, at most mn symbols have to be checked.

Since checking a symbol takes constant time, the time needed to

complete the entire operation is O(mn). Similarly, to build a

pseudo-projection database entails checking at most every symbol

in the previous pseudo-projection database, and to process a

symbol takes a constant number of operations, thus the time

needed to build a pseudo projection is also O(mn). Furthermore,

these two main operations have to be performed everytime a

recursive call is made. Since a recursive call is made for every

frequent sequence discovered, in a worst case scenario
m

2
(2n{1)

recursive calls are made. Therefore, in a worst case scenario, the

running time of the NLDFT algorithm is O(m2n(2n{1)).

It is difficult to theoretically compare the performance of the

NLDFT algorithm with the ones of the UDDAG and PLWAP

algorithms. The authors of the UDDAG algorithm do not give a

final running time bound of the algorithm, but only an upper

bound on the number of projections made and a description of the

operations made for the other parts of the algorithm. Although it

appears that the UDDAG builds less database projections than the

NLDFT algorithms, since it grows a pattern in both directions at

each recursion level instead of one, it has to go through a

candidate generation operation at each recursion level as well,

which severely increases the running time. On the other hand, the

authors of the PLWAP algorithm state that the time to build the

PLWAP-tree is O(nl), where n is the number of frequent symbols

and l is the length of the longest frequent sequence in the given

database, and the time to perform the mine process is O(fp),
where f is the number of frequent symbols and p is the number of

frequent sequences. However, is not clear if those bounds are of an

average or worst case scenario. In a worst case scenario, the

running time of the PLWAP’s mining process is O(m2n(2n{1)),
which is the same as the NLDFT algorithm’s time complexity.

This made necessary to perform running time experiments, in

order to better understand the performance of the three

algorithms and how they compare with each other.

From the memory requirements’ point of view, the NLDFT

algorithm maintains in main memory the filtered input database

(without nonfrequent symbols), the node linkage of the pattern

being growth, along with the set of frequent symbols and the

pseudo-projection database associated with each node. Moreover,

each pseudo-projection database and each frequent symbols set

are smaller than the ones of the previous node, and once the

Figure 13. Comparison of memory usage for different number of sequences. The figure shows the memory usage obtained when
processing databases with a number of sequences varying from 20k to 120k.
doi:10.1371/journal.pone.0095418.g013

Figure 14. Comparison of memory usage for different average sequence lengths. The figure shows the memory usage of the tested
algorithms when processing databases with an average sequence length varying from 10 to 40 symbols.
doi:10.1371/journal.pone.0095418.g014

Node Linkage Approach for Pattern Mining

PLOS ONE | www.plosone.org 10 June 2014 | Volume 9 | Issue 6 | e95418

frequent sequence being processed cannot be grown, its associated

frequent symbols set and pseudo-projection database are deleted,

releasing the occupied memory. On the other hand, the UDDAG

also uses pseudo-projections to grow frequent sequences, but as it

grows sequences bidirectionally, it has to store an extra pointer for

each sequence in the pseudo-projection database, to indicate no

only the start position of the sequence in the input database, but

the ending position as well. Also, at each recursion level, the

UDDAG algorithm generates candidate sequences, which are

then stored and tested against the minimum support. The number

of candidates stored severely increases when dealing with large

databases and/or low minimum supports, which has a very

negative impact on the memory consumption of the entire

algorithm (see for instance Figures 13 and 14). The PLWAP

algorithm, on the other hand, does not rely on pseudo-projection

databases and does not maintain the input database in main

memory during the mining process. However, the PLWAP

algorithm builds and maintains during the whole mining process

an elaborated data structure. When dealing with large databases

and/or low minimum supports, this data structure occupies a

significant amount of memory. This is because the tree structure

built has a branch for every sequence in the input database. Also, a

queue is created for each frequent symbol, which contains all the

occurrences of each frequent symbol in the tree structure.

Results and Discussion

Experimental Setup
A series of experiments were conducted to compare the

proposed algorithm against representative approaches. The

proposed algorithm was compared against the UDDAG [13]

and PLWAP [2] algorithms. According to the authors of [13], the

UDDAG algorithm is considerable faster than representative

algorithms such as PrefixSpan, LapinSpan [26] and SPADE.

Moreover, according to [18], PLWAP is the best model of pattern-

growth tree projection sequential pattern mining techniques.

The PLWAP algorithm’s code was obtained from the author’s

web page and the UDDAG algorithm was programmed. Both

algorithms were coded in C++ and were compiled with g++. The

proposed algorithm was also programmed in C++, and the

experiments were performed in a computer with a core i7

processor of 3.40 GHz, 16 GiB of RAM and using GNU/Linux

with the Ubuntu 11.10 distribution, as operating system. To

perform the experiments, synthetic sequence databases were used,

which were created with MBSDG (Market-Basket Synthetic Data

Figure 15. Comparison of memory usage for different frequency thresholds. Processing C20:S5:N2k:D60k.
doi:10.1371/journal.pone.0095418.g015

Figure 16. Comparison of runtime for different number of sequences. The figure shows the runtimes obtained when processing databases
with a number of sequences varying from 20k to 120k.
doi:10.1371/journal.pone.0095418.g016

Node Linkage Approach for Pattern Mining

PLOS ONE | www.plosone.org 11 June 2014 | Volume 9 | Issue 6 | e95418

Generator), an open source application available at [27]. The

application is based on the IBM Quest application, which was

used to generate test databases for several sequential patter mining

approaches (e.g. [2], [13], [1], among others). The following

parameters were used to generate the databases:

N DDD: Number of sequences in the database.

N DN D: Number of different symbols in the database.

N DSD: Average length of maximal potentially frequent sequence.

N DCD: Average sequence length.

For instance, a database labeled as C20:S10:N5k:D50k means

that DCD~20,DSD~10,DN D~5k,DDD~50k, i.e. a database with an

average sequence length of 20 symbols, an average of 10 symbols

length for the maximal potentially frequent sequence, 5,000

different symbols and 50,000 sequences. The increase of any of

this parameters when generating a database will cause an increase

in the execution time when finding sequential patterns in such

database. The parameters were chosen to be the same as those

used in [2] for testing the PLWAP algorithm, in order to have

similar experimental conditions. However, the minimum supports

used in this paper are lower than those used in [2], as its

computational resources were more limited than the ones used in

this article. The database format consists of a single file, with a line

of positive integer numbers per sequence. The numbers corre-

spond to the symbols of the sequences and are separated by spaces.

No additional information about the database should be provided

to the algorithm.

Figure 10 shows a comparison of running time for different

frequency thresholds, using a database with parameters

C10:S5:N2k:D60k. The graph shows that the processing time

of the three algorithms increases as the minimum support

decreases. This is because with lower supports, the number of

patterns that meet the frequency threshold increases, which entails

more processing. However, the proposed algorithm performs

significantly better than the other two algorithms, even having a

running time of two orders of magnitude lower than the PLWAP

algorithm. Also, Figure 15 shows the memory usage of the three

approaches for the same tests. In this experiment, the NLDFT

algorithm also requires less memory than the other two

algorithms, even being two orders of magnitude below the

UDDAG’s memory. Also, although the UDDAG algorithm had

a better running time than the PLWAP algorithm, it is much more

memory consuming and this consumption significantly increased

when the frequency threshold was lowered.

Figure 16 shows a comparison of running time for processing

databases with different number of sequences. These databases

were generated using C20:S5:N2k for the first three parameters

and D20k, D40k, D60k, D80k, D100k and D120k the last

parameter, respectively. The frequency threshold was fixed at 2.

The graph shows that as the number of sequences increases, the

running time of the algorithms increases as well, as more patterns

are likely to be discovered and more sequences have to be mined.

When dealing with the database of 80 k sequences, the UDDAG

algorithm ran out of memory. This is likely due the candidate

generation phase that the UDDAG algorithm has to go through at

each level of recursion, because it generates and stores a large

amount of candidate sequences, and this amount gets larger when

dealing with large databases and/or lower minimum supports.

Moreover, the PLWAP algorithm did not finish in an acceptable

time (less than 24 hours). The NLDFT algorithm, on the other

hand, had a better running time than the other two algorithms and

was capable of dealing with the largest database used in the

experiment. Figure 13 shows the memory usage of the three

approaches in this experiment. The memory consumption of the

three approaches increased when dealing with larger datasets. In

this experiment, the PLWAP algorithm also had a better memory

consumption than the UDDAG algorithm, although the UDDAG

had a better running time. The NLDFT algorithm also had a

better memory consumption than those two algorithm, and always

maintained the consumption below 100 MB.

Figure 17 shows the running times of the algorithms when

processing databases with different average sequence lengths. Four

databases were used, with parameters C10:S5:N2k:D10k,

C20:S8:N2k:D10k, C30:S10:N2k:D10k and C40:S13:N2k:

D10k and a frequency threshold of 2. The graph shows that the

running times of the three algorithms increase with the average

sequence length. This is likely because larger sequences can

contain more patterns than smaller ones, and the patterns could be

larger as well, which entails more processing and storage of these

patterns. In this experiment, the NLDFT algorithm performed

better than the other two algorithms and was capable of dealing

with the largest average sequence length tested. When dealing with

the database with an average sequence length of 30, the PLWAP

did not finished in an acceptable time (less than 24 hours). Also,

the UDDAG algorithm ran out of memory when dealing with the

Figure 17. Comparison of runtime for different average sequence lenghts. The figure shows the runtimes obtained when processing
databases with an average sequence length varying from 10 to 40 symbols.
doi:10.1371/journal.pone.0095418.g017

Node Linkage Approach for Pattern Mining

PLOS ONE | www.plosone.org 12 June 2014 | Volume 9 | Issue 6 | e95418

dataset with an average sequence length of 40 symbols. As

mentioned before, this is likely because the amount of candidate

sequences the UDDAG generates and stores at each level of

recursion greatly increases when dealing with larger databases.

Figure 14 shows the memory usage of the three approaches for this

experiment. The graph shows that the memory consumption

increases when dealing with larger average sequence lengths, as

more and larger patterns have to be stored. The NLDFT

algorithm had a better consumption than the other two algorithms

in this experiment as well, and maintained its consumption below

100 k kB in all the tests. Finally, Table 5 shows the number of

patterns found by the three algorithms in each database used in

the experiments.

A study case: text documents as a sequence database
The earliest sequential pattern mining algorithms were applied

to databases comprised by web logs, where each sequence was

formed by a series of web pages visited by a user in a period of

time, or customer transactions, where each sequence was formed

by the items bought by one customer in a period of time.

However, sequential pattern mining algorithms can be applied to

any database comprised by sequences. In the case of text

documents, as text keeps a natural sequential order given by its

characters and words, its possible to apply a sequential pattern

mining algorithm to a set of documents, where a sequential

element can be a single character, a word or even a contiguous

sequence of items (n-gram), and the sequential order is given by the

occurrence of such element in the document. Finding frequent

sequences of text is an interesting task because the found patterns

could contain information about the author’s style, fixed

expressions, similitude between documents, among others. More-

over, text corpora poses a challenge for current sequential pattern

mining algorithms, because these datasets are usually comprised of

a large number of documents, which can be of a large size. The

above was the motivation to peform a series of experiments using a

text database, which results are presented in this section.

In this study case the behaviour of the proposed algorithm was

tested when dealing with text documents and also aimed to find

the terminology that represents the concepts of the documents’

domain.

The dataset is composed of 57,653 text sequences with an

average length of 20 symbols or words and a symbol set size of

28,547 symbols, that belong to a set of scientific articles of the oil

extraction domain. To prepare the corpus, the stopwords were

removed and a numerical representation was generated, where a

unique integer was assigned to each different word.

Figure 11 shows a comparison between the PLWAP, UDDAG

and the proposed algorithm at different minimum supports. The

figure shows the running times obtained from tests done with

minimum supports from 20 to 10; when tested with a lower

support, UDDAG and NLDFT algorithms ran out of memory and

PLWAP was stopped after a week of processing. However, the

proposed algorithm performed significantly better than the other

two methods, specially at lower minimum supports. Moreover, the

running time of the NLDFT algorithm increased with less

pronunciation than the other two algorithms, when decreasing

Table 5. Number of patterns per database.

Database
Frequency
Threshold Patterns

C10:S5:N2k:D60k 12 37,510

10 55,941

8 86,748

6 142,563

4 255,800

2 700,242

C10:S5:N2k:D20k 2 237,493

D40k 2 474,544

D60k 2 700,242

D80k 2 912,238

D100k 2 1,164,148

D120k 2 1,428,286

C10:S5:N2k:D10k 2 115,714

C20:S8 2 854,718

C30:S10 2 4,735,950

C40:S13 2 21,848,524

Number of patterns obtained with each tested database and frequency
threshold.

Figure 18. Comparison of memory usage for different frequency thresholds in the study case. The figure shows the memory usage of
the tested algorithms when processing the study case database at frequency thresholds varying from 20 to 10 sequences.
doi:10.1371/journal.pone.0095418.g018

Node Linkage Approach for Pattern Mining

PLOS ONE | www.plosone.org 13 June 2014 | Volume 9 | Issue 6 | e95418

the frequency threshold. Figure 18 shows the memory usage of the

three algorithms in the previous experiment. The graph shows that

the UDDAG algorithm consumed much more memory than the

other two algorithms, even at the highest minimum support tested,

in which it consumes almost 6 gigabytes of memory. Also, the

proposed algorithm consumed significantly less memory than the

PLWAP algorithm, going from 25 megabytes to 87 megabytes

approximately, at the lowest support in the graph, compared with

the PLWAP algorithm, which starts at 390 megabytes and goes up

to 547 megabytes approximately. This is likely because the

PLWAP algorithm builds a tree data structure and queues for each

frequent symbol, representing the input database, which could

consume a great amount of memory when the input database is

large, and maintains it during the whole mining process.

Figures 19 and 20 show the running time during experiments

done to test the scalability of the proposed algorithm. In the

experiment of Figure 19, algorithms PLWAP, UDDAG and

NLDFT’s running time were tested using different percentages of

the corpus, and a fixed frequency threshold of 10 sequences. It is

important to notice that even at 40% of the corpus, the PLWAP

algorithm tooks almost five times the running time of PLWAP and

UDDAG algorithms, and tends to exponentially increase its

running time as the number of sequences increases. UDDAG and

NLDFT algorithms showed a similar performance until dealing

with the 80% of the corpus, which is were the UDDAG algorithm

takes almost two times the running time of NLDFT, and this

difference increases when dealing with the 100% of the corpus.

This is likely because when dealing with larger databases, the

candidate-generation phase of the UDDAG algorithm generates a

huge amount of candidate patterns, which testing consumes a

significant amount of time.

Figure 20 shows the running time obtained when varying the

size of the symbol set (S). This was done by removing the least

frequent symbols, those that occurred in less than a hundred

sequences, and only maintaining those symbols that occur in at

least one hundred sequences. The resultant symbol set had a size

of 1131 symbols. From this symbol set, several test were done, by

removing symbols from the set by its frequency, in an ascending

order. The frequency threshold was fixed to 10 sequences. The

graph shows that, when dealing with a larger symbol set, the

running time of the three algorithms increased. This is likely

because, as more frequent symbols were added, more frequent

patterns arised, which entailed more storage and processing.

Moreover, there is a significant difference between the running

times obtained in the test done with a symbol set of 331 symbols

and the test done with a symbol set of 531. This is because the

number of frequent sequences that were created when adding the

next 200 frequent symbols is significantly large, almost twice the

number of frequent sequences found in the test with a symbol set

of 331 symbols (see Table 6). Nevertheless, the NLDFT algorithm

performed significantly better than the other two approaches in all

the tests, achieving a running time lower than the PLWAP

Figure 19. Comparison of runtime at different percentages of the corpus in the study case. The figure shows the runtimes of the tested
algorithms, at different percentages of the study case database.
doi:10.1371/journal.pone.0095418.g019

Figure 20. Comparison of runtime at different symbol set sizes in the study case. The figure shows the runtimes of the tested algorithms,
at different sizes of the symbol set of the study case database.
doi:10.1371/journal.pone.0095418.g020

Node Linkage Approach for Pattern Mining

PLOS ONE | www.plosone.org 14 June 2014 | Volume 9 | Issue 6 | e95418

algorithm’s in two orders of magnitude and lower than the

UDDAG algorithm’s in one order of magnitude when the symbol

set had 531 or more symbols. Finally, Table 6 shows the number

of patterns found in each database used in this study case.

Discussion
The experiments carried out showed that the proposed

algorithm performs significantly better than the UDDAG and

PLWAP algorithms, specially at lower supports. The experiments

also showed how the processing time of the three algorithms

increased as the minimum support was lowered, because this

produces an increase in the number of patterns that meet the

frequency threshold. Also, the proposed algorithm shows a better

scalability than the UDDAG and PLWAP algorithms, as it

maintains a good performance when increasing the number of

sequences, the average sequence length or the size of the symbol

set, while the UDDAG and PLWAP algorithms have a great

decrease in performance when increasing the size of the dataset.

Regarding memory efficiency, the NLDFT algorithm also

performed better than the UDDAG and PLWAP algorithms.

This is because the NLDFT algorithm, unlike the UDDAG and

PLWAP algorithms, does not build a costly data structure holding

the entire input database to perform the mining process, and

neither stores candidate patterns to later test their frequency. The

NLDFT algorithm only stores the necessary information for the

pattern that is currently growing.

Conclusions

Based on the experimental and theorical comparison with

recent sequential pattern mining approaches, the NLDFT

algorithm showed to be one of the most efficient for sequential

pattern mining. The NLDFT algorithm has better peformance in

running time and memory consumption than popular approaches.

Additionaly, it has better scalability.

As future work, we will explore different approaches for

improving the efficiency of the frequent symbol extraction process

of the NLDFT algorithm, because this process is executed

frequently. Approaches to solve the k-majority problem could be

useful, since this problem is similar to the frequenty symbol

extraction process. Among these approaches we will explore: using

hash operations and linked lists to store the frequency counters

[28] and using a parallel scheme, discovering local frequent

symbols and then reducing that set to find the final set of frequent

symbols [29]. Moreover, NLDFT has no restriction over the

distance between the symbols of a frequent sequence (known as gap

restriction), however, it would be desirable to give the user the

option of setting a gap restriction as an input parameter of the

algorithm, in order to obtain frequent sequences useful in areas

such as Text Mining, where frequent sequences whose symbols are

separated by long distances are not meaningful. A possible way to

achieve this, is by assigning a restriction value to each growing

frequent sequence, which would indicate the maximum distance

where frequent symbols could appear after the sequence to be

considered within the gap restriction.

Author Contributions

Conceived and designed the experiments: ON RC LVP CFU JACO.

Performed the experiments: ON. Analyzed the data: ON RC LVP CFU

JACO. Contributed reagents/materials/analysis tools: ON RC LVP CFU

JACO. Wrote the paper: ON RC LVP CFU JACO.

References

1. Agrawal R (1995) Mining sequential patterns. Data Engineering, 1995
Proceedings.

2. Ezeife C, Lu Y (2005) Mining web log sequential patterns with position coded

pre-order linked wap-tree. Data Mining and Knowledge Discovery 10: 5–38.

3. Pei J, Han J, Mortazavi-Asl B (2000) Mining access patterns efficiently from web

logs. Discovery and Data Mining.

4. Tang P, Turkia MP (2007) Mining frequent web access patterns with partial
enumeration. Proceedings of the 45th annual southeast regional conference on -

ACM-SE 45: 226.

5. Garcia-Blasco S, Mola-Velasco SM, Danger R, Rosso P (2012) Automatic Drug-

Drug Interaction Detection: A Machine Learning Approach With Maximal. In:
Challenge Task on Drug-Drug Interaction Extraction.

6. Hernández-Reyes E, Garcı́a-Hernández R, Carrasco-Ochoa A, Martı́nez-

Trinidad F (2006) Document Clustering Based on Maximal Frequent
Sequences. In: Proceedings of the 5th international conference on Advances

in Natural Language Processing. pp. 257–267.

7. Denicia-Carral C, Montes-y Gómez M, Villaseñor Pineda L, Hernández Garcı́a

R (2006) A Text Mining Approach for Definition Question Answering. In: in
Proceedings for the Fifth International Conference on Natural Language

Processing (FinTal 2006). pp. 76–86.

8. Coyotl-Morales RM, Villaseñor Pineda L, Montes-y Gómez M, Rosso P (2006)

Authorship Attribution Using Word Sequences. In: Proceedings of the 11th

Iberoamerican conference on Progress in Pattern Recognition, Image Analysis

and Applications. pp. 844–853.

9. Tsai CY, Liou JJ, Chen CJ, Hsiao CC (2012) Generating touring path

suggestions using time interval sequential pattern mining. Expert Systems with

Applications 39: 3593–3602.

10. Shim B, Choi K, Suh Y (2012) Crm strategies for a small-sized online shopping

mall based on association rules and sequential patterns. Expert Systems with

Applications 39: 7736–7742.

11. Anwara F, Petrouniasb I, Morrisc T, Kodogiannisd V (2012) Mining anomalous

events against frequent sequences in surveillance videos from commercial

environments. Expert Systems with Applications 39: 4511–4531.

12. Garcı́a-Pedrajas N, de Haro-Garcı́a A (2011) Scaling up data mining algorithms:

review and taxonomy. Progress in Artificial Intelligence 1: 71–87.

13. Chen J (2009) An UpDown Directed Acyclic Graph Approach for Sequential

Pattern Mining. — IEEE Transactions on Knowledge and Data Engineering 22:

913–928.

14. Gouda K, Hassaan M, Zaki MJ (2010) Prism: An effective approach for frequent

sequence mining via prime-block encoding. Journal of Computer and System

Sciences 76: 88–102.

15. Ahonen-Myka H (2002) Discovery of frequent word sequences in text. Pattern

Detection and Discovery 26: 180–189.

Table 6. Patterns per text database in the study case.

Database
Frequency
Threshold Patterns

C20:N28,547:D57,653 20 67,436

18 88,852

16 112,820

14 161,871

12 254,137

10 528,737

C20:N28,547:D11,531 (20%) 10 32,823

D23,062 (40%) 10 102,582

D34,593 (60%) 10 135,029

D46,124 (80%) 10 255,674

D57,653 (100%) 10 528,737

C20:N331:D52,432 10 74399

N531:D53,810 10 209754

N731:D54,660 10 231354

N931:D55,071 10 262561

N1131:D55,316 10 268484

Number of patterns obtained with each variation of the study case database
and each frequency threshold used.
doi:10.1371/journal.pone.0095418.t006

Node Linkage Approach for Pattern Mining

PLOS ONE | www.plosone.org 15 June 2014 | Volume 9 | Issue 6 | e95418

16. Li C (2008) Efficiently mining closed subsequences with gap constraints.

International Conference on Data Mining: 313–322.
17. Masseglia F, Poncelet P, Teisseire M (2009) Efficient mining of sequential

patterns with time constraints: Reducing the combinations. Expert Systems with

Applications 36: 2677–2690.
18. Mabroukeh NR, Ezeife CI (2010) A taxonomy of sequential pattern mining

algorithms. ACM Computing Surveys 43: 1–41.
19. Zaki M (2001) SPADE: An efficient algorithm for mining frequent sequences.

Machine Learning 42: 31–60.

20. Tan H, Dillon T, Hadzic F, Chang E (2006) SEQUEST: mining frequent
subsequences using DMA Strips. In: Proceedings of the Seventh International

Conference on Data Mining and Information Engineering. Southampton, UK:
Citeseer, volume 1 of WIT Transactions on Information and Communication

Technologies, Vol 37, pp. 35–328. doi:10.2495/DATA060321
21. Spiliopoulou M (1999) WUM: a tool for web utilization analysis. The World

Wide Web and Databases 1590: 184–203.

22. Peterson Ea, Tang P (2008) Mining frequent sequential patterns with first-
occurrence forests. Proceedings of the 46th Annual Southeast Regional

Conference on XX - ACM-SE 46: 34.

23. Ezeife C, Saeed K, Zhang D (2009) Mining very long sequences in large

databases with PLWAP Long. In: Proceedings of the 2009 International
Database Engineering & Applications Symposium. New York, New York, USA:

ACM, pp. 234–241. doi:10.1145/1620432.1620457

24. Antunes C, Oliveira AL (2003) Generalization of pattern-growth methods for
sequential pattern mining with gap constraints. In: Machine Learning and Data

Mining in Pattern Recognition. pp. 239–251.
25. Tang P, Turkia M, Gallivan K (2007) Mining web access patterns with first-

occurrence linked WAP-trees. In: SEDE. Citeseer, pp. 247–252.

26. Kitsuregawa M, Zhenglu Y (2005) LAPIN-SPAM: An Improved Algorithm for
Mining Sequential Pattern. 21st International Conference on Data Engineer-

ingWorkshops (ICDEW’05): 1222–1222.
27. Pitman A (2011) Website hosting the market-basket synthetic data generator

application. URL http://synthdatagen.codeplex.com/.
28. Karp RM, Shenker S, Papadimitriou CH (2003) A simple algorithm for finding

frequent elements in streams and bags. ACM Transactions on Database Systems

28: 51–55.
29. Cafaro M, Tempesta P (2011) Finding frequent items in parallel. Concurrency

and Computation: Practice and Experience 23: 1774–1788.

Node Linkage Approach for Pattern Mining

PLOS ONE | www.plosone.org 16 June 2014 | Volume 9 | Issue 6 | e95418

http://synthdatagen.codeplex.com/

